• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

NIDA IRP

National Institute on Drug Abuse - Intramural Research Program

  National Institute on Drug Abuse | NIH IRP | Treatment Info | Emergency Contacts
  • Home
  • News
    • Featured Paper of the Month
    • Reviews to Read
    • Hot off the Press
    • IRP News
    • Awards
    • Technology Development Initiative Paper of the Month
    • Seminar Series
    • Addiction Grand Rounds
  • About
    • About NIDA IRP
    • Contact Us
    • Directions and Map
    • Careers at NIDA IRP
    • Emergency Contacts
    • Employee Assistance Resources
  • Organization
    • Faculty
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Office of Education and Career Development
    • Administrative Management Branch
    • Molecular Targets and Medications Discovery Branch
    • Cellular and Neurocomputational Systems Branch
    • Molecular Neuropsychiatry Research Branch
    • Neuroimaging Research Branch
    • Behavioral Neuroscience Research Branch
    • Integrative Neuroscience Research Branch
    • Translational Addiction Medicine Branch
    • Core Facilities
    • Community Outreach Group
  • Training Programs
    • Office of Education and Career Development
    • OECD Awards
    • Summer Internship Program
    • Postbaccalaureate Program
    • Graduate Partnership Program
    • Postdoctoral Program
    • NIDA Speakers Bureau
    • Clinical Electives Program
    • Clinical Mentoring Program
  • Study Volunteers

Neuron-Specific Genome Modification in the Adult Rat Brain Using CRISPR-Cas9 Transgenic Rats.

A figure from this studyHot Off the Press – May 10, 2019.

Cell-specific CRISPR/Cas9 in the adult rat brain.

Microscopic images of the midbrain of a transgenic rat that selectively expresses Cas9 in dopamine neurons.  On the left side, control gRNAs were delivered to cells in the midbrain using a virus (green).  On the right side, gRNAs to a target gene (white) is expressed in both dopaminergic neurons (red) and non-dopaminergic neurons.  Arrows identify dopaminergic cells that received gRNAs.   Only on the right side which received gRNAs to target (white)  do we see the selective loss of target gene expression from dopaminergic neurons.  Modified from Bäck, Necarsulmer et al Neuron 2019 with permission from Elsevier.

Publication Information

Back, Susanne; Necarsulmer, Julie; Whitaker, Leslie R; Coke, Lamarque M; Koivula, Pyry; Heathward, Emily J; Fortuno, Lowella V; Zhang, Yajun; Yeh, Grace C; Baldwin, Heather A; Spencer, Morgan D; Mejias-Aponte, Carlos A; Pickel, James; Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R; Underhill, Suzanne M; Amara, Susan G; Domanskyi, Andrii; Anttila, Jenni E; Airavaara, Mikko; Hope, Bruce T; Hamra, Kent F; Richie, Christopher T; Harvey, Brandon K

Neuron-Specific Genome Modification in the Adult Rat Brain Using CRISPR-Cas9 Transgenic Rats. Journal Article

In: Neuron, vol. 102, no. 1, pp. 105–119, 2019, ISSN: 1097-4199 (Electronic); 0896-6273 (Linking).

Abstract | Links

@article{Back:2019aac,
title = {Neuron-Specific Genome Modification in the Adult Rat Brain Using CRISPR-Cas9 Transgenic Rats.},
author = {Susanne Back and Julie Necarsulmer and Leslie R Whitaker and Lamarque M Coke and Pyry Koivula and Emily J Heathward and Lowella V Fortuno and Yajun Zhang and Grace C Yeh and Heather A Baldwin and Morgan D Spencer and Carlos A Mejias-Aponte and James Pickel and Alexander F Hoffman and Charles E Spivak and Carl R Lupica and Suzanne M Underhill and Susan G Amara and Andrii Domanskyi and Jenni E Anttila and Mikko Airavaara and Bruce T Hope and Kent F Hamra and Christopher T Richie and Brandon K Harvey},
url = {https://www.ncbi.nlm.nih.gov/pubmed/30792150},
doi = {10.1016/j.neuron.2019.01.035},
issn = {1097-4199 (Electronic); 0896-6273 (Linking)},
year = {2019},
date = {2019-04-03},
urldate = {2019-04-03},
journal = {Neuron},
volume = {102},
number = {1},
pages = {105--119},
address = {Molecular Mechanisms of Cellular Stress and Inflammation Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.},
abstract = {Historically, the rat has been the preferred animal model for behavioral studies. Limitations in genome modification have, however, caused a lag in their use compared to the bevy of available transgenic mice. Here, we have developed several transgenic tools, including viral vectors and transgenic rats, for targeted genome modification in specific adult rat neurons using CRISPR-Cas9 technology. Starting from wild-type rats, knockout of tyrosine hydroxylase was achieved with adeno-associated viral (AAV) vectors expressing Cas9 or guide RNAs (gRNAs). We subsequently created an AAV vector for Cre-dependent gRNA expression as well as three new transgenic rat lines to specifically target CRISPR-Cas9 components to dopaminergic neurons. One rat represents the first knockin rat model made by germline gene targeting in spermatogonial stem cells. The rats described herein serve as a versatile platform for making cell-specific and sequence-specific genome modifications in the adult brain and potentially other Cre-expressing tissues of the rat.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Historically, the rat has been the preferred animal model for behavioral studies. Limitations in genome modification have, however, caused a lag in their use compared to the bevy of available transgenic mice. Here, we have developed several transgenic tools, including viral vectors and transgenic rats, for targeted genome modification in specific adult rat neurons using CRISPR-Cas9 technology. Starting from wild-type rats, knockout of tyrosine hydroxylase was achieved with adeno-associated viral (AAV) vectors expressing Cas9 or guide RNAs (gRNAs). We subsequently created an AAV vector for Cre-dependent gRNA expression as well as three new transgenic rat lines to specifically target CRISPR-Cas9 components to dopaminergic neurons. One rat represents the first knockin rat model made by germline gene targeting in spermatogonial stem cells. The rats described herein serve as a versatile platform for making cell-specific and sequence-specific genome modifications in the adult brain and potentially other Cre-expressing tissues of the rat.

Close

  • https://www.ncbi.nlm.nih.gov/pubmed/30792150
  • doi:10.1016/j.neuron.2019.01.035

Close

Primary Sidebar

News

  • All News and Featured Publications
  • Featured Paper of the Month
  • Hot off the Press
  • Reviews to Read
  • IRP News
  • Awards
  • Technology Development Initiative Paper of the Month
  • Seminar Series
Home / News Main / Hot off the Press / Neuron-Specific Genome Modification in the Adult Rat Brain Using CRISPR-Cas9 Transgenic Rats.
  • National Institute on Drug Abuse
  • NIH Intramural Research Program
  • National Institutes of Health
  • Health and Human Services
  • USA.GOV
  • Emergency Contacts
  • Employee Assistance
  • Treatment Information
  • Contact Us
  • Careers at NIDA IRP
  • Accessibility
  • Privacy
  • HHS Vulnerability Disclosure
  • Freedom of Information Act
  • Document Viewing Tools
  • Offsite Links
  • National Institute on Drug Abuse
  • NIH Intramural Research Program
  • National Institutes of Health
  • Health and Human Services
  • USA.GOV
  • Emergency Contacts
  • Employee Assistance
  • Treatment Information
  • Contact Us
  • Careers at NIDA IRP
  • Accessibility
  • Privacy
  • HHS Vulnerability Disclosure
  • Freedom of Information Act
  • Document Viewing Tools
  • Offsite Links

  • Home
  • News
    ▼
    • Featured Paper of the Month
    • Reviews to Read
    • Hot off the Press
    • IRP News
    • Awards
    • Technology Development Initiative Paper of the Month
    • Seminar Series
    • Addiction Grand Rounds
  • About
    ▼
    • About NIDA IRP
    • Contact Us
    • Directions and Map
    • Careers at NIDA IRP
    • Emergency Contacts
    • Employee Assistance Resources
  • Organization
    ▼
    • Faculty
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Office of Education and Career Development
    • Administrative Management Branch
    • Molecular Targets and Medications Discovery Branch
    • Cellular and Neurocomputational Systems Branch
    • Molecular Neuropsychiatry Research Branch
    • Neuroimaging Research Branch
    • Behavioral Neuroscience Research Branch
    • Integrative Neuroscience Research Branch
    • Translational Addiction Medicine Branch
    • Core Facilities
    • Community Outreach Group
  • Training Programs
    ▼
    • Office of Education and Career Development
    • OECD Awards
    • Summer Internship Program
    • Postbaccalaureate Program
    • Graduate Partnership Program
    • Postdoctoral Program
    • NIDA Speakers Bureau
    • Clinical Electives Program
    • Clinical Mentoring Program
  • Study Volunteers