• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

NIDA IRP

National Institute on Drug Abuse - Intramural Research Program

  National Institute on Drug Abuse | NIH IRP | Treatment Info | Emergency Contacts
  • Home
  • News
    • Featured Paper of the Month
    • Reviews to Read
    • Hot off the Press
    • IRP News
    • Awards
    • Technology Development Initiative Paper of the Month
    • Seminar Series
    • Addiction Grand Rounds
  • About
    • About NIDA IRP
    • Contact Us
    • Directions and Map
    • Careers at NIDA IRP
    • Emergency Contacts
    • Employee Assistance Resources
  • Organization
    • Faculty
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Office of Education and Career Development
    • Administrative Management Branch
    • Molecular Targets and Medications Discovery Branch
    • Cellular and Neurocomputational Systems Branch
    • Molecular Neuropsychiatry Research Branch
    • Neuroimaging Research Branch
    • Behavioral Neuroscience Research Branch
    • Integrative Neuroscience Research Branch
    • Translational Addiction Medicine Branch
    • Core Facilities
    • Community Outreach Group
  • Training Programs
    • Office of Education and Career Development
    • OECD Awards
    • Summer Internship Program
    • Postbaccalaureate Program
    • Graduate Partnership Program
    • Postdoctoral Program
    • NIDA Speakers Bureau
    • Clinical Electives Program
    • Clinical Mentoring Program
  • Study Volunteers

Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice

Hot Off the Press! – March 2016

Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice.

Xue, Xue; Yang, Jing-Yu; He, Yi; Wang, Li-Rong; Liu, Ping; Yu, Li-Sha; Bi, Guo-Hua; Zhu, Ming-Ming; Liu, Yue-Yang; Xiang, Rong-Wu; Yang, Xiao-Ting; Fan, Xin-Yu; Wang, Xiao-Min; Qi, Jia; Zhang, Hong-Jie; Wei, Tuo; Cui, Wei; Ge, Guang-Lu; Xi, Zheng-Xiong; Wu, Chun-Fu; Liang, Xing-Jie

Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Journal Article

In: Nat Nanotechnol, vol. 11, no. 7, pp. 613–620, 2016, ISSN: 1748-3395 (Electronic); 1748-3387 (Linking).

Abstract | Links

@article{Xue2016,
title = {Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice.},
author = {Xue Xue and Jing-Yu Yang and Yi He and Li-Rong Wang and Ping Liu and Li-Sha Yu and Guo-Hua Bi and Ming-Ming Zhu and Yue-Yang Liu and Rong-Wu Xiang and Xiao-Ting Yang and Xin-Yu Fan and Xiao-Min Wang and Jia Qi and Hong-Jie Zhang and Tuo Wei and Wei Cui and Guang-Lu Ge and Zheng-Xiong Xi and Chun-Fu Wu and Xing-Jie Liang},
url = {http://www.ncbi.nlm.nih.gov/pubmed/26974957},
doi = {10.1038/nnano.2016.23},
issn = {1748-3395 (Electronic); 1748-3387 (Linking)},
year = {2016},
date = {2016-07-01},
urldate = {2016-07-01},
journal = {Nat Nanotechnol},
volume = {11},
number = {7},
pages = {613--620},
address = {CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China, Beijing 100190, China.},
abstract = {Methamphetamine (METH) abuse is a serious social and health problem worldwide. At present, there are no effective medications to treat METH addiction. Here, we report that aggregated single-walled carbon nanotubes (aSWNTs) significantly inhibited METH self-administration, METH-induced conditioned place preference and METH- or cue-induced relapse to drug-seeking behaviour in mice. The use of aSWNTs alone did not significantly alter the mesolimbic dopamine system, whereas pretreatment with aSWNTs attenuated METH-induced increases in extracellular dopamine in the ventral striatum. Electrochemical assays suggest that aSWNTs facilitated dopamine oxidation. In addition, aSWNTs attenuated METH-induced increases in tyrosine hydroxylase or synaptic protein expression. These findings suggest that aSWNTs may have therapeutic effects for treatment of METH addiction by oxidation of METH-enhanced extracellular dopamine in the striatum.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Methamphetamine (METH) abuse is a serious social and health problem worldwide. At present, there are no effective medications to treat METH addiction. Here, we report that aggregated single-walled carbon nanotubes (aSWNTs) significantly inhibited METH self-administration, METH-induced conditioned place preference and METH- or cue-induced relapse to drug-seeking behaviour in mice. The use of aSWNTs alone did not significantly alter the mesolimbic dopamine system, whereas pretreatment with aSWNTs attenuated METH-induced increases in extracellular dopamine in the ventral striatum. Electrochemical assays suggest that aSWNTs facilitated dopamine oxidation. In addition, aSWNTs attenuated METH-induced increases in tyrosine hydroxylase or synaptic protein expression. These findings suggest that aSWNTs may have therapeutic effects for treatment of METH addiction by oxidation of METH-enhanced extracellular dopamine in the striatum.

Close

  • http://www.ncbi.nlm.nih.gov/pubmed/26974957
  • doi:10.1038/nnano.2016.23

Close

Primary Sidebar

News

  • All News and Featured Publications
  • Featured Paper of the Month
  • Hot off the Press
  • Reviews to Read
  • IRP News
  • Awards
  • Technology Development Initiative Paper of the Month
  • Seminar Series
Home / News Main / Hot off the Press / Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice
  • National Institute on Drug Abuse
  • NIH Intramural Research Program
  • National Institutes of Health
  • Health and Human Services
  • USA.GOV
  • Emergency Contacts
  • Employee Assistance
  • Treatment Information
  • Contact Us
  • Careers at NIDA IRP
  • Accessibility
  • Privacy
  • HHS Vulnerability Disclosure
  • Freedom of Information Act
  • Document Viewing Tools
  • Offsite Links
  • National Institute on Drug Abuse
  • NIH Intramural Research Program
  • National Institutes of Health
  • Health and Human Services
  • USA.GOV
  • Emergency Contacts
  • Employee Assistance
  • Treatment Information
  • Contact Us
  • Careers at NIDA IRP
  • Accessibility
  • Privacy
  • HHS Vulnerability Disclosure
  • Freedom of Information Act
  • Document Viewing Tools
  • Offsite Links

  • Home
  • News
    ▼
    • Featured Paper of the Month
    • Reviews to Read
    • Hot off the Press
    • IRP News
    • Awards
    • Technology Development Initiative Paper of the Month
    • Seminar Series
    • Addiction Grand Rounds
  • About
    ▼
    • About NIDA IRP
    • Contact Us
    • Directions and Map
    • Careers at NIDA IRP
    • Emergency Contacts
    • Employee Assistance Resources
  • Organization
    ▼
    • Faculty
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Office of Education and Career Development
    • Administrative Management Branch
    • Molecular Targets and Medications Discovery Branch
    • Cellular and Neurocomputational Systems Branch
    • Molecular Neuropsychiatry Research Branch
    • Neuroimaging Research Branch
    • Behavioral Neuroscience Research Branch
    • Integrative Neuroscience Research Branch
    • Translational Addiction Medicine Branch
    • Core Facilities
    • Community Outreach Group
  • Training Programs
    ▼
    • Office of Education and Career Development
    • OECD Awards
    • Summer Internship Program
    • Postbaccalaureate Program
    • Graduate Partnership Program
    • Postdoctoral Program
    • NIDA Speakers Bureau
    • Clinical Electives Program
    • Clinical Mentoring Program
  • Study Volunteers