• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

NIDA IRP

National Institute on Drug Abuse - Intramural Research Program

  National Institute on Drug Abuse | NIH IRP | Treatment Info | Emergency Contacts
  • Home
  • News
    • Featured Paper of the Month
    • Reviews to Read
    • Hot off the Press
    • IRP News
    • Awards
    • Technology Development Initiative Paper of the Month
    • Seminar Series
    • Addiction Grand Rounds
  • About
    • About NIDA IRP
    • Contact Us
    • Directions and Map
    • Careers at NIDA IRP
    • Emergency Contacts
    • Employee Assistance Resources
  • Organization
    • Faculty
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Office of Education and Career Development
    • Administrative Management Branch
    • Molecular Targets and Medications Discovery Branch
    • Cellular and Neurocomputational Systems Branch
    • Molecular Neuropsychiatry Research Branch
    • Neuroimaging Research Branch
    • Behavioral Neuroscience Research Branch
    • Integrative Neuroscience Research Branch
    • Translational Addiction Medicine Branch
    • Core Facilities
    • Community Outreach Group
  • Training Programs
    • Office of Education and Career Development
    • OECD Awards
    • Summer Internship Program
    • Postbaccalaureate Program
    • Graduate Partnership Program
    • Postdoctoral Program
    • NIDA Speakers Bureau
    • Clinical Electives Program
    • Clinical Mentoring Program
  • Study Volunteers

Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration.

A figure from this study.

A figure from this study.

Featured Paper of the Month – March 2019.

Abuse of opioids including oxycodone is very prevalent in the US. Researchers in the laboratory of Jean Lud Cadet in the NIDA IRP have shown that when rats are given access to oxycodone for several hours, some of the rats will increase the amount of the drug in a very steep fashion whereas others will only take moderate quantities of the drug. They also found, however, that, after a month of withdrawal from oxycodone, all those rats had decreased levels of mu opioid receptor protein in the dorsal striatum, a brain region that is important for habit forming. Decreases in striatal opioid receptor protein expression in these rats may be one of the reasons why addicted patients  relapse to opioid seeking.

 

Publication Information

Blackwood, Christopher A; Hoerle, Reece; Leary, Michael; Schroeder, Jennifer; Job, Martin O; McCoy, Michael T; Ladenheim, Bruce; Jayanthi, Subramaniam; Cadet, Jean Lud

Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration. Journal Article

In: Mol Neurobiol, 2018, ISSN: 1559-1182 (Electronic); 0893-7648 (Linking).

Abstract | Links

@article{Blackwood:2018aa,
title = {Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration.},
author = {Christopher A Blackwood and Reece Hoerle and Michael Leary and Jennifer Schroeder and Martin O Job and Michael T McCoy and Bruce Ladenheim and Subramaniam Jayanthi and Jean Lud Cadet},
url = {https://www.ncbi.nlm.nih.gov/pubmed/30155791},
doi = {10.1007/s12035-018-1318-z},
issn = {1559-1182 (Electronic); 0893-7648 (Linking)},
year = {2018},
date = {2018-08-28},
urldate = {2018-08-28},
journal = {Mol Neurobiol},
address = {Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.},
abstract = {Repeated exposure to the opioid agonist, oxycodone, can lead to addiction. Here, we sought to identify potential neurobiological consequences of withdrawal from escalated and non-escalated oxycodone self-administration in rats. To reach these goals, we used short-access (ShA) (3 h) and long-access (LgA) (9 h) exposure to oxycodone self-administration followed by protracted forced abstinence. After 31 days of withdrawal, we quantified mRNA and protein levels of opioid receptors in the rat dorsal striatum and hippocampus. Rats in the LgA, but not the ShA, group exhibited escalation of oxycodone SA, with distinction of two behavioral phenotypes of relatively lower (LgA-L) and higher (LgA-H) oxycodone takers. Both LgA, but not ShA, phenotypes showed time-dependent increases in oxycodone seeking during the 31 days of forced abstinence. Rats from both LgA-L and LgA-H groups also exhibited decreased levels of striatal mu opioid receptor protein levels in comparison to saline and ShA rats. In contrast, mu opioid receptor mRNA expression was increased in the dorsal striatum of LgA-H rats. Moreover, hippocampal mu and kappa receptor protein levels were both increased in the LgA-H phenotype. Nevertheless, hippocampal mu receptor mRNA levels were decreased in the two LgA groups whereas kappa receptor mRNA expression was decreased in ShA and LgA oxycodone groups. Decreases in striatal mu opioid receptor protein expression in the LgA rats may serve as substrates for relapse to drug seeking because these changes occur in rats that showed incubation of oxycodone seeking.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Repeated exposure to the opioid agonist, oxycodone, can lead to addiction. Here, we sought to identify potential neurobiological consequences of withdrawal from escalated and non-escalated oxycodone self-administration in rats. To reach these goals, we used short-access (ShA) (3 h) and long-access (LgA) (9 h) exposure to oxycodone self-administration followed by protracted forced abstinence. After 31 days of withdrawal, we quantified mRNA and protein levels of opioid receptors in the rat dorsal striatum and hippocampus. Rats in the LgA, but not the ShA, group exhibited escalation of oxycodone SA, with distinction of two behavioral phenotypes of relatively lower (LgA-L) and higher (LgA-H) oxycodone takers. Both LgA, but not ShA, phenotypes showed time-dependent increases in oxycodone seeking during the 31 days of forced abstinence. Rats from both LgA-L and LgA-H groups also exhibited decreased levels of striatal mu opioid receptor protein levels in comparison to saline and ShA rats. In contrast, mu opioid receptor mRNA expression was increased in the dorsal striatum of LgA-H rats. Moreover, hippocampal mu and kappa receptor protein levels were both increased in the LgA-H phenotype. Nevertheless, hippocampal mu receptor mRNA levels were decreased in the two LgA groups whereas kappa receptor mRNA expression was decreased in ShA and LgA oxycodone groups. Decreases in striatal mu opioid receptor protein expression in the LgA rats may serve as substrates for relapse to drug seeking because these changes occur in rats that showed incubation of oxycodone seeking.

Close

  • https://www.ncbi.nlm.nih.gov/pubmed/30155791
  • doi:10.1007/s12035-018-1318-z

Close

Primary Sidebar

News

  • All News and Featured Publications
  • Featured Paper of the Month
  • Hot off the Press
  • Reviews to Read
  • IRP News
  • Awards
  • Technology Development Initiative Paper of the Month
  • Seminar Series
Home / News Main / Featured Paper of the Month / Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration.
  • National Institute on Drug Abuse
  • NIH Intramural Research Program
  • National Institutes of Health
  • Health and Human Services
  • USA.GOV
  • Emergency Contacts
  • Employee Assistance
  • Treatment Information
  • Contact Us
  • Careers at NIDA IRP
  • Accessibility
  • Privacy
  • HHS Vulnerability Disclosure
  • Freedom of Information Act
  • Document Viewing Tools
  • Offsite Links
  • National Institute on Drug Abuse
  • NIH Intramural Research Program
  • National Institutes of Health
  • Health and Human Services
  • USA.GOV
  • Emergency Contacts
  • Employee Assistance
  • Treatment Information
  • Contact Us
  • Careers at NIDA IRP
  • Accessibility
  • Privacy
  • HHS Vulnerability Disclosure
  • Freedom of Information Act
  • Document Viewing Tools
  • Offsite Links

  • Home
  • News
    ▼
    • Featured Paper of the Month
    • Reviews to Read
    • Hot off the Press
    • IRP News
    • Awards
    • Technology Development Initiative Paper of the Month
    • Seminar Series
    • Addiction Grand Rounds
  • About
    ▼
    • About NIDA IRP
    • Contact Us
    • Directions and Map
    • Careers at NIDA IRP
    • Emergency Contacts
    • Employee Assistance Resources
  • Organization
    ▼
    • Faculty
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Office of Education and Career Development
    • Administrative Management Branch
    • Molecular Targets and Medications Discovery Branch
    • Cellular and Neurocomputational Systems Branch
    • Molecular Neuropsychiatry Research Branch
    • Neuroimaging Research Branch
    • Behavioral Neuroscience Research Branch
    • Integrative Neuroscience Research Branch
    • Translational Addiction Medicine Branch
    • Core Facilities
    • Community Outreach Group
  • Training Programs
    ▼
    • Office of Education and Career Development
    • OECD Awards
    • Summer Internship Program
    • Postbaccalaureate Program
    • Graduate Partnership Program
    • Postdoctoral Program
    • NIDA Speakers Bureau
    • Clinical Electives Program
    • Clinical Mentoring Program
  • Study Volunteers