• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

NIDA IRP

National Institute on Drug Abuse - Intramural Research Program

  National Institute on Drug Abuse | NIH IRP | Treatment Info | Emergency Contacts
  • Home
  • News
    • Featured Paper of the Month
    • Reviews to Read
    • Hot off the Press
    • IRP News
    • Awards
    • Technology Development Initiative Paper of the Month
    • Seminar Series
    • Addiction Grand Rounds
  • About
    • About NIDA IRP
    • Contact Us
    • Directions and Map
    • Careers at NIDA IRP
    • Emergency Contacts
    • Employee Assistance Resources
  • Organization
    • Faculty
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Office of Education and Career Development
    • Administrative Management Branch
    • Molecular Targets and Medications Discovery Branch
    • Cellular and Neurocomputational Systems Branch
    • Molecular Neuropsychiatry Research Branch
    • Neuroimaging Research Branch
    • Behavioral Neuroscience Research Branch
    • Integrative Neuroscience Research Branch
    • Translational Addiction Medicine Branch
    • Core Facilities
    • Community Outreach Group
  • Training Programs
    • Office of Education and Career Development
    • OECD Awards
    • Summer Internship Program
    • Postbaccalaureate Program
    • Graduate Partnership Program
    • Postdoctoral Program
    • NIDA Speakers Bureau
    • Clinical Electives Program
    • Clinical Mentoring Program
  • Study Volunteers

Orbitofrontal neurons signal sensory associations underlying model-based inference in a sensory preconditioning task.

Featured Paper of the Month – July 2018.

Geoffrey Schoenbaum, M.D., Ph.D.

Geoffrey Schoenbaum, M.D., Ph.D.

Using knowledge of the structure of the world to infer value is at the heart of model-based reasoning and relies on a circuit that includes the orbitofrontal cortex (OFC). Some accounts link this to the representation of biological significance or value by neurons in OFC, while other models focus on the representation of associative structure or cognitive maps. Here we tested between these accounts by recording OFC neurons in rats during an OFC-dependent sensory preconditioning task. We found that while OFC neurons were strongly driven by biological significance or reward predictions at the end of training, they also showed clear evidence of acquiring the incidental stimulus-stimulus pairings in the preconditioning phase, prior to reward training. These results support a role for OFC in representing associative structure, independent of value.

Publication Information

Sadacca, Brian F; Wied, Heather M; Lopatina, Nina; Saini, Gurpreet K; Nemirovsky, Daniel; Schoenbaum, Geoffrey

Orbitofrontal neurons signal sensory associations underlying model-based inference in a sensory preconditioning task. Journal Article

In: Elife, vol. 7, 2018, ISSN: 2050-084X (Electronic); 2050-084X (Linking).

Abstract | Links

@article{Sadacca:2018aa,
title = {Orbitofrontal neurons signal sensory associations underlying model-based inference in a sensory preconditioning task.},
author = {Brian F Sadacca and Heather M Wied and Nina Lopatina and Gurpreet K Saini and Daniel Nemirovsky and Geoffrey Schoenbaum},
url = {https://www.ncbi.nlm.nih.gov/pubmed/29513220},
doi = {10.7554/eLife.30373},
issn = {2050-084X (Electronic); 2050-084X (Linking)},
year = {2018},
date = {2018-03-07},
journal = {Elife},
volume = {7},
address = {Intramural Research program of the National Institute on Drug Abuse, NIH, Baltimore, United States.},
abstract = {Using knowledge of the structure of the world to infer value is at the heart of model-based reasoning and relies on a circuit that includes the orbitofrontal cortex (OFC). Some accounts link this to the representation of biological significance or value by neurons in OFC, while other models focus on the representation of associative structure or cognitive maps. Here we tested between these accounts by recording OFC neurons in rats during an OFC-dependent sensory preconditioning task. We found that while OFC neurons were strongly driven by biological significance or reward predictions at the end of training, they also showed clear evidence of acquiring the incidental stimulus-stimulus pairings in the preconditioning phase, prior to reward training. These results support a role for OFC in representing associative structure, independent of value.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}

Close

Using knowledge of the structure of the world to infer value is at the heart of model-based reasoning and relies on a circuit that includes the orbitofrontal cortex (OFC). Some accounts link this to the representation of biological significance or value by neurons in OFC, while other models focus on the representation of associative structure or cognitive maps. Here we tested between these accounts by recording OFC neurons in rats during an OFC-dependent sensory preconditioning task. We found that while OFC neurons were strongly driven by biological significance or reward predictions at the end of training, they also showed clear evidence of acquiring the incidental stimulus-stimulus pairings in the preconditioning phase, prior to reward training. These results support a role for OFC in representing associative structure, independent of value.

Close

  • https://www.ncbi.nlm.nih.gov/pubmed/29513220
  • doi:10.7554/eLife.30373

Close

Primary Sidebar

News

  • All News and Featured Publications
  • Featured Paper of the Month
  • Hot off the Press
  • Reviews to Read
  • IRP News
  • Awards
  • Technology Development Initiative Paper of the Month
  • Seminar Series
Home / News Main / Featured Paper of the Month / Orbitofrontal neurons signal sensory associations underlying model-based inference in a sensory preconditioning task.
  • National Institute on Drug Abuse
  • NIH Intramural Research Program
  • National Institutes of Health
  • Health and Human Services
  • USA.GOV
  • Emergency Contacts
  • Employee Assistance
  • Treatment Information
  • Contact Us
  • Careers at NIDA IRP
  • Accessibility
  • Privacy
  • HHS Vulnerability Disclosure
  • Freedom of Information Act
  • Document Viewing Tools
  • Offsite Links
  • National Institute on Drug Abuse
  • NIH Intramural Research Program
  • National Institutes of Health
  • Health and Human Services
  • USA.GOV
  • Emergency Contacts
  • Employee Assistance
  • Treatment Information
  • Contact Us
  • Careers at NIDA IRP
  • Accessibility
  • Privacy
  • HHS Vulnerability Disclosure
  • Freedom of Information Act
  • Document Viewing Tools
  • Offsite Links

  • Home
  • News
    ▼
    • Featured Paper of the Month
    • Reviews to Read
    • Hot off the Press
    • IRP News
    • Awards
    • Technology Development Initiative Paper of the Month
    • Seminar Series
    • Addiction Grand Rounds
  • About
    ▼
    • About NIDA IRP
    • Contact Us
    • Directions and Map
    • Careers at NIDA IRP
    • Emergency Contacts
    • Employee Assistance Resources
  • Organization
    ▼
    • Faculty
    • Office of the Scientific Director
    • Office of the Clinical Director
    • Office of Education and Career Development
    • Administrative Management Branch
    • Molecular Targets and Medications Discovery Branch
    • Cellular and Neurocomputational Systems Branch
    • Molecular Neuropsychiatry Research Branch
    • Neuroimaging Research Branch
    • Behavioral Neuroscience Research Branch
    • Integrative Neuroscience Research Branch
    • Translational Addiction Medicine Branch
    • Core Facilities
    • Community Outreach Group
  • Training Programs
    ▼
    • Office of Education and Career Development
    • OECD Awards
    • Summer Internship Program
    • Postbaccalaureate Program
    • Graduate Partnership Program
    • Postdoctoral Program
    • NIDA Speakers Bureau
    • Clinical Electives Program
    • Clinical Mentoring Program
  • Study Volunteers